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Abstract-A model is proposed to describe the structure of the cooling boundary layer between a cold 
burner wall and a flame near flash-back. Two-dimensional combustion equations are solved using a one- 
step chemical reaction model. The analytical solutions prove to be in good agreement with the results of 
a numerical study. Furthermore, the thickness of the cooling layer is estimated and appears to be in fair 
agreement with available experimental data. The understanding of the mass and heat transport processes 
in a flame near a cold burner wall is indispensable for the understanding of the flame stabilization process. 

1. INTRODUCTION 

THE STABILIZATION process of a premixed laminar 
flame near a cooled burner is determined by the trans- 
port processes in three boundary layers : the thermal, 
the diffusive and the shear boundary layers. The thick- 
ness of the thermal boundary layer, i.e. the horizontal 
distance between the flame and the burner wall, will 
he referred to as the stand-off distance 6,. Roughly 
speaking, a flame stabilizes in such a way that the gas 
speed in the attachment point is equal to the adiabatic 
flame speed, as is shown in Fig. 1, schematically. This 
interpretation is used for the introduction of the well- 
known critical gradients [l] to obtain a geometry- 
independent measure for blow-off and flash-back. 

The stand-off distance changes with the level of the 
flame relative to the top of the burner. This depen- 
dency is caused by changes in the cooling rate by the 
burner wall and by diffusion of fuel in the surrounding 
atmosphere. The influence of cooling grows as the 
flame moves downwards, thus causing a local 
reduction of the flame speed and an increase of the 
stand-off distance. The influence of diffusion of fuel 
in the surrounding atmosphere increases if the flame 
is lifted further above the burner, leading to a 
reduction of the equivalence ratio in the gas flow. This 
decrease of the equivalence ratio causes an increase of 
the local value of the flame speed in fuel-rich flames 
and, thus, to a decrease of the stand-off distance. The 
decrease of the equivalence ratio has the opposite 
effect ‘in fuel-lean flames. 

The starting-point of this view of the stabilization 

TThis description of the stabilization process does not 
account for the disruption of chain reactions in the flame by 
the diffusion of radicals towards the cold burner wall, which 
might very well be important in a more detailed description 
of flame stabilization [4]. 

$ The flame temperature, and consequently also the flame 
speed, is influenced mainly by the energy balance in the 
upstream part of the flame. 

principle of a flame is that it is linked directly with the 
local value of the flame speed [2,3]. The flame speed 
in its turn depends on the local values of the tem- 
perature and mass fractions. In this approach a 
description of the shape of the temperature and mass 
fractions profiles as a function of the position of the 
flame relative to the burner is indispensable for the 
understanding of the stabilization process.7 The main 
subject of this paper is the analysis of these profiles in 
the region between a cooled burner wall and a flame 
stabilized near the top of the wall. This is a flame at 
the flash-back limit, since the shape of the upstream 
boundary layers and, therefore, the local value of the 
flame speed, does not change any more when the flame 
moves further in the burner.f 

It is impossible to give an analytical solution of this 
problem in its full complexity. Therefore, a simplified 
model is proposed in which the velocity component 
perpendicular to the wall is assumed to be zero. Fur- 
thermore, the parallel velocity component at the 

FIG. 1. The schematic velocity profiles and the flame speed 
at different levels near a cooled wall from the top down- 
wards : the flame moves down, is stabilized and moves up. 
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NOMENCLATURE 

A reaction rate parameter [(kg m ‘)’ ’ 7 I”] Y mass fraction of species i 

(‘P specific heat [J kg- ’ K ‘1 

Q the gradient of the velocity profile at the 
wall [s ‘1 

Greek symbols 

J, the ShvabZel’dovich variable for 
reaction rate parameter 

species i ; reaction rate parameter 

L length scale [m] (j,, length scale of the stand-off distance [m] 

Le, the Lewis number of species i 
All the amount of heat produced by the 

P the pressure [N mm ‘1 
reaction [J kg- ‘1 

R, the specific gas constant [J kg ’ K ‘1 ‘I length scale of the cooling layer [m] 
i 

SC the mass of species i consumed per unit 
the thermal conductivity [J mm ’ Km ’ s ‘1 

mass of fuel [kg, kg< ‘1 PI, fuel mass consumption rate [kg m _ ’ s ’ ] 

T temperature [K] P mixture density [kg m ‘1. 

r, reaction rate parameter [K] 
II .u-component of the velocity vector [m s ‘1 Superscripts 
I’ r-component of the velocity vector [m s ‘1 the unburnt boundary conditions 
V velocity vector : the burnt boundary conditions. 

inflow boundary is taken to be independent of the 
distance from the burner wall (as shown in Fig. 2). 
The gas speed has to be chosen equal to the adiabatic 
flame speed to find a stabilized flame in this situation. 

The upstream part of a flat flame, propagating 
through a tube in the frame of reference connected 

to the flame, may be regarded as an experimental 
equivalent of the modeled system, at least as long as 
the post-flame zone has a negligible influence on the 
structure of the pre-heating zone. Actually, the model 

can be applied to any combustion system in which the 
shear boundary layer is much thinner than the thermal 
and diffusion boundary layers. Unfortunately, these 
boundary layers build up equally fast, since the 
Prandtl and Lewis numbers ofgases are of order unity. 
Therefore, it seems impossible to create an equivalent 
flow situation in a stabilized flame, experimentally. 
However, the restriction imposed on the velocity field 
is necessary to derive analytical expressions for the 
structure of the thermal and diffusive boundary layers. 
The influence of the shape of the velocity profile will 
be studied to some extent in Appendix B, numerically. 

The model presented in this paper is an extension 
of the study presented in ref. [5], where the same 
approximation for the velocity field is used. Addition- 
ally, the influence of lateral mass diffusion on the 

FIG. 2. The theoretical (left) and numerical (right) studied 
2-D geometry. 

structure of the boundary layers is neglected in ref. 
[5]. The study presented in this paper shows that the 
balance of the lateral thermal and diffusive fluxes plays 
an important role in the principle of flame stabi- 
lization. Another approach is found in ref. [6], where 
the same restriction is used for the velocity field. They 

analyze the structure of the boundary layer for the 
case that conduction parallel to the wall is negligible 
as compared to conduction towards the wall. This 
description concentrates on cooling by the burner wall 
in the downstream part of the flame, whereas our 
description is concerned with the behavior of the 
boundary layers in the upstream part of the flame. 
Most of the other theoretical models (e.g. [7,8]) of 
cooled flames use an artificial heat-loss term in the 

energy equation. 
The starting points of the study presented here, arc 

the combustion equations as presented in Section 2. 

The relation between the shape of the temperature 
and mass-fractions profiles near the cold burner wall 
is described schematically in Section 3. Expressions 
for the profiles of the temperature, mass fractions and 
the Shvab-Zel’dovich variables arc derived in Sections 

4, 5 and 6, respectively. Furthermore, the thickness of 
the boundary layers is estimated in Section 8. 

Along the way the analytical results will be con- 
fronted with the results of a two-dimensional numeri- 
cal study of a stoichiometric CH,/air flame, to support 
the simplifications made during the analysis. The 

numerical algorithm, which has been used. is 
described in refs. [9911]. The numerical results arc 

obtained by using the same physical simplifications 
as made in the analytical model (constant thermal 
conductivity, constant specific heat and the one- 
dimensional flow approximation). However, the 
mathematical simplifications introduced in the ana- 
lytical description (e.g. the assumption of an infinitely 
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thin reaction zone and the boundary conditions on 
the boundary of the cooling layer) are omitted in the 
numerical model. The numerical results are calculated 
on an equidistant 8 1 x 8 1 grid on the geometry shown 
in Fig. 2. The chosen physical and chemical 
parameters, introduced in Section 2, lead to an adia- 
batic flame speed of 0.41 m s- ’ for this flame. To find 
a stabilized flame numerically, the gas speed at inflow 
is taken to be equal to 0.4 m s- ‘. The flame is stabilized 
at the top of the burner by making the fuel con- 
sumption rate equal to zero for x < -0.2 mm. This 
places the maximum of the fuel consumption rate (i.e. 
the ‘flame’) approximately at the same level as the 
burner top. 

The analytical results are confronted with some 
experimental results found in the literature in the dis- 
cussion presented at the end of this paper (Section 9). 
In spite of the simplifications that have been made to 
obtain the analytical results, they compare reasonably 
well with experimental data. The influence of some 
of the simplifications, especially those concerning the 
thermal conductivity and the shape of the velocity 
profile (constant, linear and parabolic) are studied 
numerically in Appendices A and B. 

2. COMBUSTION EQUATIONS 

The combustion process is supposed to be a one- 
step irreversible reaction : 

Fuel (fu) $-Oxygen (ox) =z- Product (pr) 

with an Arrhenius-like fuel mass consumption rate 
equal to [12,13] : 

or ” = --ApP[Y,]“[Y OX lB e(-‘J’), (1) 

where p is the mixture density, T is the temperature 
and Y,,,,, are the mass fractions of fuel and oxygen. 
Furthermore, A, a, /I, p (=a+B) and T, are rate 
parameters. To obtain a physically realistic flame we 
have chosen a combination of physical and chemical 
parameters (Table 1) such that the experimental 
results for the flame speed of CH,/air mixtures in 
flat burner-stabilized flames [ 14,151 are reproduced 
correctly [ 111. 

The equations describing a stationary deflagration 
process, are the conservation equations for energy, 
mass fractions, mass and momentum [3,16]. The 
energy and mass fraction equations have the same 
shape : 

and 

V. [pvc,T] -V* [NT] = -A&, (2) 

v~lpvY;]-v*[pD,vYiJ = sipru (3) 

where v is the velocity vector, cp the specific heat, 1 

t Ah and cp are calculated in accordance with ref. [17]. 
$ This definition gives S, = 1. 

Table 1. The physical parameters 

Parameter 

P” 
T” 
1 

1 nf 

th 

so, 
A 

Value Dimension 

1.13 
300 

~,~T/1500)Y 
0.092 
0.77 
1365 

4.813 x 10’ 
3.883 

2.6 x 1Ol5 
1.2 
2.8 

16900 

[kg m- ‘I 
[Kl 

[J m-’ Km’ s-‘1 
[J m-’ K-’ s-‘1 

[J kg- ’ K- ‘1 
[J kg- ‘I 

[kg,, kgl, ‘I 
[(kgm-3)“-“-8’1 

WI 

the thermal conductivity, Di the mass diffusion 
coefficient of species i in the mixture, Ah the amount 
of enthalpy produced by the reaction? and s, the mass 
of species i, consumed per unit mass of fue1.S 

Adding (3) for all species (including the inerts and 
products) should lead to the continuity equation : 

v-pv = 0, 

since the diffusion fluxes and chemical source terms 
add to zero by definition. 

In this paper we will study the behavior of the 
thermal boundary layer using a flat velocity profile 
and supposing that the lateral velocity component is 
equal to zero. Therefore, the flow field is assumed to 
be one-dimensional : 

v.pv=~=o, 
which reduces the calculation of the flow field to one 
equation : 

Pk Yhk Y) = PUQ (4) 

where the superscript u denotes the ‘unburnt’ con- 
ditions for x + - cc. 

An equation of state has to be added to complete 
the set of equations. The ideal gas law may be used 
here : 

P=pR,T, 

where P is the pressure and R, the specific gas constant 
of the mixture. Most stationary deflagration processes 
are low Mach number flows, therefore, the pressure 
P may be assumed to be constant. Furthermore, Rg is 
assumed to be independent of the mixture com- 
position. Combination of these approximations gives 
a density depending on temperature only : 

P T” 

p”=y. 

The specific heat and the transport coefficients 
are chosen in such a way that an analytical analysis 
is applicable. The thermal conductivity is taken 
to be constant and equal to the thermal conductiv- 
ity of nitrogen at T = 1500 K. The mass diffusion 



638 L. P. H. DE GOEY and H. C. DE LANCX 

coefficients of fuel and oxygen (II,.” and D,,,) are 
chosen in such a way that the Lewis numbers : 

are equal to one. 
The combined use of the continuity equation (4) 

and the equation of state (5) makes it possible to 
eliminate p and U, thus reducing the set of variables 
(T, Y,, and Y,,) and conservation equations (2) and 
(3) to three, coupled by the reaction rate (I). 

3. SCHEMATIC VIEW 

The profiles of temperature, mass fractions and 
Shvab-Zel’dovich variables 

look schematically as shown in Fig. 3 as a function of 
the distance from the burner wall ~1. The flame is 
stabilized for y > S,, whereas the cooling by the 
burner wall causes the flame to extinguish for _r < 6,. 

Both the temperature and the mass fractions behave 
as in an undisturbed flat flame at distances from the 
wall larger than 6,. 

We may expect a decrease of the temperature in the 
region 0 < JI < 6,. There is no significant fuel mass 
consumption in this region, therefore, the mass frac- 
tions change only due to diffusion. This means that 
they will be almost constant over a small distance q 
from the burner wall, since the diffusion flux through 
the wall is zero. Furthermore, the assumption of Lewis 
numbers equal to one imposes that the J,,,,-profiles 
are not influenced by the presence of the flame [I I]. 
Therefore, the decline of the mass fraction profiles in 
the intermediate region (q < y < 6,) has to be pro- 
portional to the incline of the temperature profiles, 
in such a way that Jtu,ox is (almost) constant in this 
region. 

This means that, in the region y < y < a,,, the heat 
loss by cooling is compensated by a chemical enthalpy 

distance to the wall 

FE. 3. Schematic profiles for r, Y, and J, 

flux, caused by diffusion of fuel and oxygen while the 
heat loss is not compensated in the region y < q. The 
above considerations lead to the conclusion that the 
ShvabZel’dovich variables are merely influenced 
near the wall (y < q) and that they have an almost 
constant value through the remainder of the domain 
(for all .y < 0 andJ > I?). 

4. THE THERMAL BOUNDARY LAYER 

An approximate solution of the energy con- 

servation equation with approximate boundary con- 
ditions for the thermal boundary layer will be pre- 
sented in this section. The assumption with respect to 

the velocity profiles given in Section 2, combined with 
a constant thermal conductivity and specific heat 
leads to the following reduced form of the energy 
equation (2) : 

where L equals the length scale defined by : 

L= /- 
0.092 

pUu”c’,, 
~~~ - 1.5x 10 4m. (7) 

= 1.13x0.4x 1365 - 

As sketched in Fig. 3, the upstream domain of the 
flame is divided into two regions, as far as the tem- 
perature is concerned. There is an undisturbed region 
(,r > 6,). where the profiles are independent of the 
distance to the burner wall (the lateral conduction 
may be neglected) and a boundary layer (_I’ < ii,). 
where the cooling is important. The flat flame in the 
undisturbed region is considered to bc infinitely thin 
and positioned at .Y = 0. This gives rise to an expo- 
nential temperature profile as a function of s : 

T(.u,y) = T”+(p-?“) e“ for! > 6,. 

This leads to the following boundary conditions for 
the temperature in the cooling layer : 

~,=0: T= T”. 

and 

.y+ --‘JL:T= 7=. 

The closing boundary condition (at .Y = 0) must be 
chosen in such a way that it meets the other boundary 
conditions and the energy equation. 

The cooling in the thermal boundary layer is 

assumed to cause a temperature drop so fast that there 
is effectively no combustion in this region (i)r, = 0). 
By doing so, the shape of the boundary conditions 
and energy equation (6) imply that a separation of 
directions might be applied : 

Note that this will give an exact solution of the energy 
equation under the assumed boundary conditions. 
Further note, that the assumption of a constant ver- 
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tical velocity at inflow (u”) is essential to come to the 
disconnection of directions. 

In the thermal boundary layer the separation of 
directions gives : 

The left- and right-hand sides of equation (8) depend 
only on x and y, respectively. This means that both 
sides have to be equal to a constant c2, since the 
solution has to hold for all values of x and y in the 
boundary layer. Three different solutions are possible : 

for c2 = 0: t, = k, exlL and tz = k,y (9) 

for c2 > 0: t, = kjer+x and t2 = k4eCy+k5e-cy 

(10) 

and 

forc’(= -1=) < O:t, = k6erkr 

and t2 = k7 sin (Zy) +k, cos (-ly) (11) 

with 

r+ = &[I+&1 -[2cL12)]. 

The parameters k ,, 8 are constants. In the solutions 
for c2 < 0 only r+ is allowed, since r_ is negative 
and, therefore, gives indefinite results for x -+ -co. 
In this study we fully exclude the oscillatory solutions 
for c2 < 0 in the y-direction, since they disturb the 
one-dimensional flat-flame solution for y > 6, as 
demanded by the boundary condition. Note that the 
solutions given in equations (9)-( 11) also hold for the 
mass fractions and the ShvabZel’dovich variables as 
long as they are described by the same type of con- 
servation equation and have appropriate boundary 
conditions. 

I I I 
0 1 2 

A distance to the burner wall (mm) 

The solution found in (9) meets all boundary con- 
ditions for the energy equation (6). It reads : 

T(x,y) = T”+(Tb--Y)$exiL for0 <y < 6,. 
q 

Note that the derivative is discontinuous at y = 6,. 
This is a consequence of the presence of the infinitely 
thin reaction zone at x = 0. However, the absence of a 
flame for x < 0 should give rise to a smooth transition 
from the linear to the constant behavior near y = a,, 
as in the numerical results (see Fig. 4). The conse- 
quence of (12) is that the temperature increases lin- 
early in the y-direction for all y < 6,. From a physical 
point of view this is easy to understand, for there is 
only conduction (and no convection) in that direction. 
It is clear that the assumption of separation of direc- 
tions in fact provides the additional boundary con- 
dition. 

The solution in (12) is the result of the dis- 
connection of the fluxes in both directions and, there- 
fore, of the assumed boundary conditions. The 
expression is confronted with the numerical result in 
Fig. 4, to verify the validity of these approximations. 
It shows the same type of behavior as predicted, 
namely a linear increase of the logarithm of 
(T- r”)/( Tb - T”) in x-direction and a linear increase 
of T in y-direction. The disconnection of fluxes and 
the choice of boundary conditions seems, therefore, 
to be justified. The only unknown in (12) is the stand- 
off distance 6,. Its size determines the distance of the 
flame from the burner. A first guess for the value of 
6, can be made by comparing Figs. 3 and 4. This gives 

5. THE DIFFUSIVE BOUNDARY LAYER 

We now turn to the calculation of the mass fraction 
profiles. They obey the same type of reduced con- 

I+ - 
z: 

I 

0 1 

- distance to the bunter top (mm) 

FIG. 4. Numerically determined temperature profiles in y-direction T (left) and in x-direction 
In ((T- T”)/(Tb- T”)) (right). 
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servation equation as the temperature (6) following 
from (3) : 

where the Lewis numbers have been assumed to be 
equal to one. & is again assumed to be equal to zero 
in the thermal boundary layer (pi < 6,). This leads to 
the same set of solutions as presented in (9)-(1 I). 
There is, however, a change in the type of boundary 
condition at the burner wall, since no particles move 
in or out of the wall. aY,/8~ has to be equal to zero 
at y = 0 for x < 0. The boundary conditions for Y, 
are, therefore, given by : 

x -+ -m: Y, = r: 

The boundary condition for the mass fractions at the 
burner wall is responsible for the fact that a solution 
analogous to (12) is not sufficient to represent the 
correct behavior of the mass fraction profiles near the 
wall. The correct shape of the mass fraction profiles 
is found by the addition of solutions of the C* > 0 type 
in (10) to a solution of the C’ = 0 type in (9). Note 
that the inclusion of the solution of the c2 = 0 type is 
necessary to ensure that the Shvab-Zel’dovich vari- 
ables are not influenced by the presence of a flame at 
y = 6,. Therefore, the solution of the mass fractions 
is given by : 

where p(x, y) reads : 

The integral is rewritten by defining : 

for c > li2L (using I’ = - I). The solutions for which 
C’ < 1/2L arc discarded because tho solutions for 
I’ 2 1/2L form a complete orthogonal set of functions. 
sutficient to fulfill (16). We divide (16) by c‘ ” 
and replace sj2L by X for the sake of notation. This 

gives : 

kdk[F’(k)e’“‘+G’(k)c Ii,.‘] = c’ 

where F’(li j and G’(k-) are the aInplitudes of the SOILI- 

tion Fc corresponding to F(C) and G(C). rcspecLivcly. 
The two integrals may be put togcthcr as : 

1 f 

---i 4L’ ___, 
lkl dkR(k) c’“’ = e,’ (17) 

where 

and 

A Fourier transformation may be applied if the right- 
hand side of (I 7) is continued as a bounded function 
for all x values instead of only for values X cc 0. WC 
have chosen to do so by means of symmetrical con- 
tinuation according to : 

forX<O: .--- Ikl dkfijk) ebiX = e’ 

and 

i’(.x, y) = 3. de e-“‘[F(c) e [I+\~‘{1 [?‘Ll’)lX,‘ZL 

0 Note that different continuations for X > 0 will lead 
to different amplitudes R(k). However, they all give 

+G(c)e[’ \.(I -[?1./.1?)11 U.], (15) 
rise to the same shape of the profile for X < 0. The 

The amplitudes F(c) and G(c) indicate the con- 
chosen (symmetrical) continuation implies 

tribution of solutions with length scale 1,‘~ in the F’(ii) = G’( -/i) 
j)-direction. Note that solutions with c c 0 do not 
contribute since they lead to diverging solutions Or 
for JI --f cu. The boundary condition at y = 0 : R(k) = R( -k). 

i;y 
= 0 

Application of the inverse Fourier-transformation 

;;I; _ ,tt.w now leads to : 

will determine F(c) and G(c). The use of solution (14) 
pi 

dX ,I] lkl.r+ 
I 

dXe 11+1A/i- 
on this boundary leads to : *(I 

-t G(c) eI ’ ,,(I --12~~.l’~lr~*L], (16) Subst’t t. 1 u ion of this solution for R(k) in P(.u, y) gives : 
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xe-(J(l+k3-1)Y/2LCOS kx 0 2L . (18) 

Both the factors (1 + k2)- 3/2 and e-(J(‘+k’)-‘)y’ZL indi- 
cate that the most important contribution to F is 
given by the k 2: 0 values, especially for larger y- 
values. It may therefore be expected from (18) that 
F(x, y) has a typical decrease of emyi2’ in the y-direc- 
tion. The term P represents the deviation of the mass 
fraction profiles from their linear incline. The length 
scale q introduced in Section 3 will therefore have a 
valueoftheorderof~-2L=3~10-~m. 

The solution of (14) combined with (18) results in 
mass fractions at y = 6,, which are smaller than Yp. 
This is physically inappropriate, especially when YF 
equals zero. Therefore, the boundary condition at 
y = 6, must be redefined, which is done by replacing 
[ Yp - Y,“]/S, in (14) by A YJS,. Next, A Y, can be found 
by assuming that the mass fractions are equal to Yp 
in the flame-attachment point (0,&J : 

Y,(O,6,) = Yp = Y: 

which leads to : 

AY, = 
r;-- Yp 

l+zl- dk[:(IIk2~3e--(‘+*z)“i;“. 

(19) 

OT 

0 1 2 

w distance to the burner wall (mm) 

The numerical solution Y, of (13) is presented in 
Fig. 5. It shows that the mass fraction profiles indeed 
behave as predicted by (14). The exponential decrease 
in the x-direction is shown by means of the logarithm : 

ln Yf”-- YE ( > m. 
Note the resemblance of Figs. 4 and 5. The horizontal 
(no-flux) zone near to the wall is followed by an almost 
linear decrease with a decline proportional to the 
increase of temperature in the y-direction. Therefore, 
the disconnection of directions seems to be justified 
again. Furthermore, the region in which the mass 
fraction profiles are constant has a width of a few 
tenths of millimeters, which agrees with the above 
result for q. 

6. THE SOLUTION OF THE SHVAB-ZEL’DOVICH 

VARIABLES 

The expression for T&y) in (12) has to be recon- 
sidered before we turn to the solution of the Shvab- 
Zel’dovich variables. The combined solutions of the 
temperature and the mass fractions may not give rise 
to a discontinuous derivative in the ShvabZel’dovich 
variables at the y = 6, boundary, since the flame has 
no influence on its conservation equations. Therefore, 
the linear incline of the temperature has to be pro- 
portional to the decline of the mass fractions. This 
gives a new solution T(x, J.J) : 

T(x,_JJ) = T"+ATf $1 
q 

(20) 

with 

0 1 

- distance to the burner top (mm) 

FIG. 5. Numerically determined fuel mass-fraction profiles in y-direction Y, (left) and in x-direction 
In CC Yr, - W/( G - GM (right). 
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x=0.00 mm 

x-o.25 mm 

x=-o.50 mm 

x4.75 mm 

: i 
0 1 2 

~__+ distance to the burner wall (mm) 

_ ~______ 

0 I 

-t distance to the burner top (mm) 

FIG. 6. Numerically determined profiles for the logarithm of the Shvab--Zel’dovich variables for fuel in 
y-direction (left) and in .x-direction (right). 

instead of Tb- T”. Adding c,T/Ah in (20) to Y,ls, in 
(14), (18) and (19) gives: 

Note that the terms linear in y in the solutions for 7 

and Y, are cancelled, which means that the solution 
for the ShvabZel’dovich variables is indeed not 
influenced by the presence of the flame at _I’ = ii,. 

The difference in the boundary conditions for the 

temperature and the mass fractions are the cause of 
the decrease of JrUu.oX near the burner wall. Therefore, 
this solution satisfies the conservation equation : 

for all values of y (thus also for J > b,), as well as the 
boundary conditions : 

?J, c:r 
?‘=O: = 

ijl. r7r. 

y >> r/ : J, -+ J:” 

_y + - x : J, = J," 

The starting-point of this model is the existence of an 
unperturbed flame for J > (5,. As the solution in (21) 
shows, there is in fact no y-value for which the Shvab 
Zel’dovich variables are not influenced by cooling. 
However, the exponential decrease provides a strongly 
decreasing influence of the cooling for JI >> 2L. There- 
fore, 6, will have to be larger than 2L ( 2 a). 

The numerical results for the ShvabZel’dovich 
variable Jfu are shown in Fig. 6, by means of the 
logarithm of 1 - Jf,/JFu. The logarithm may be 

expected to be linearly shaped in both directions .Y 
and ~1, if the k N 0 terms give the most important 
contributions to Jr, (in accordance with the prediction 

made on the basis of (18)). This is indeed seen clearly. 
Therefore, the added result of temperature and mass 
fractions in the ShvabZel’dovich variable (21) proves 
to be a good approximation of the numerical result. 
Furthermore, this shows that the loss of cnthalpy is 
well described by the proposed model. 

Figure 6 indicates that the length scale : 

is a measure for the width of the region of constant 
mass fraction profiles. $ determined according to (22) 
leads to a quantitative estimate for ‘7. The numerical 
result for II’ presented in Fig. 7 shows a value 01 

0.5 r 

3 
8 
i 

1 
L 

0 
0 1 2 

-----_) distance to the burner wall (mm) 

FIG. 7. 4’ according to (27). 
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approximately 2.3 x lo-” m, which agrees reasonably 
well with the estimated value for 4 of 2L, found in 
Section 5. 

7. THE ENERGY BALANCE 

The solution of the Shvab-Zel’dovich variables will 
now be used to check the energy balance in the region 
below the flame. First, the cooling rate (Q,} by the 
wall is calculated by using (12) : 

(23) 

The total loss of energy (Qr) at the outflow of the 
burner (X = 0) is determined from : 

s 
m Qr = p”u”Ah dy K’-Ji(O,y)l. 

0 

The use of J,(O, _r) according to (21) gives : 

= !y5_gp = FL, 
4 g 

where we used : 

(24) 

AY- AT A 
Ah~=c -- and I,=-------, 

U$ p 6, pUUUCp 

The fact that (23) and (24) lead to the same result 
means that the solution found for the ShvabZel’do- 
vich variables indeed satisfies the conservation equa- 
tions. 

It is possible to determine an estimated value for S, 
by calculating QW numerically. However, to obtain an 
accurate value for S, from equation (23), it is necess- 
ary that the flame is stabilized exactly at the height of 
the top of the burner rim (x = 0) and that it is infi- 
nitely thin. The numerically found QW is very sensitive 
to changes of flame position in the n-direction. Our 
numerical results give a 6, of approximately 7 x 10e4 
m, which agrees reasonably with the estimated value, 
presented in Section 4. 

8. THE THICKNESS S, OF THE THERMAL 

BOUNDARY LAYER 

The solution of the conservation equations for 
energy and species in the thermal boundary layer 

t T(O,6,) < Tb implies that the Aame stabilizes with a 
small angle relative to the y-axis. 

1 

0.5 

0 / I 

0 5 ---+ 6,/L 10 

FIG. 8. The temperature and the flame speed in the attach- 
ment point 6, according to (25) and (26), respectively. 

(0 < y < 6,) and in the region (0 < y < q) has pro- 
vided us with a typical length scale (q) of the order of 
2L = 3 x 10e4 m. This agrees reasonably well with the 
value for tj determined according to (22), which gives 
$ = 2.3 x 10e4 m. The model also implies that q is 
a minimum value for 6,. The temperature profiles 
calculated numerically, support this conclusion. They 
lead to an estimated value for S, of order 9 x 10m4 m. 

The numerical values for the stand-off distance, 
presented above, are in fact the consequence of the 
numerical balance between the local values of the 
flame speed and the gas speed. It is also possible to 
derive a value for 6, on the basis of an analytical 
analysis of that balance. This is done as follows. The 
flame stabilizes in the point (x, y) = (0, a,), where the 
flame speed reaches the gas speed (which has been 
chosen to be equal to the adiabatic flame speed). How- 
ever, the solution of (21) indicates that the adiabatic 
Same speed and maximum temperature Tb are 
reached only for y -+ co. This means that 6, has to be 
large enough, so that the temperature and the flame 
speed are close to their adiabatic values in the attach- 
ment point.? An equation for the temperature in the 
attachment point T(O,6,) is found by using (20) : 

Tb-T” 

T(O,6,) - T” =1+$J+/(,:kJ3 

x e-J(~+k’w~~ (25) 

The flame speed in the attachment point (uf(0,6,)) 
relative to the adiabatic value (ur) is calcutated by 
using the analytical relation between the flame tem- 
perature and the flame speed of a flat burner-stabilized 
methane/air flame [l 1,181. This results in : 

(26) 
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for a stoichiometric mixture. The results of (25) and 
(26) are shown in Fig. 8 as a function of 8,/L. It is 
clear from these figures that 6,/L must have a value 
close to (or larger than) 5 to obtain a flame speed in 
the attachment point close to the adiabatic value. 
The resulting value for (5, 1 8 x IO ’ m agrees with 

previous estimates. 
The above analysis indicates that the value for ij‘, is 

influenced mainly by the length scale L and by the 

ratio T.* )/)T”. 

9. DISCUSSION 

In this section we will first discuss the influence of 

the choice of a constant thermal conductivity and a 
constant velocity profile within the thermal boundary 
layer. Subsequently, the results found for ii, will be 
compared with some experimental data found in the 
litcrdturc. 

So far, we assumed that E. has a constant value 
(equal to the value for nitrogen at T = 1500 K). In 
reality, the thermal conductivity is temperature dcpen- 
dent and varies significantly through a flame. The 
presented analytical description clearly shows the 
influence of the chosen value for the thermal con- 
ductivity (through L) on 6,. It may, therefore, be 
expected that the temperature dependence of the ther- 
mal conductivity also influences the value found for 
6,. Numerical results on the strucrure of the boundary 
layers using a more realistic model for the thermal 
conductivity are presented in Appendix A. Thcsc 
results indicate that the values for 4’ and S,, do not 
change considerably, although some changes in the 
shape of the profiles are observed. 

The influence of changes in the velocity profile is 
studied to some extent in Appendix B. The results 
show that the shape of the temperature and mass 
fraction profiles are clearly influenced by the chosen 
velocity profile, especially in the near vicinity of the 
wall (0 < J’ < )I). However, there appears to bc no 
significant change in the profiles close to the attach- 
ment point (J = 6,). Furthermore, the thickness of 
the thermal boundary layer S, hardly changes. 

We now turn to the comparison of the presented 
values for the stand-off distance 6, and experimental 
results found in the literature. The available data on 
critical gradients near the flash-back limit will be used 
to make this comparison. In the definition of critical 
gradients it is assumed that the thickness of the ther- 
mal boundary layer is independent of the shape of the 
burner (and consequently also of the velocity profile 
near the burner wall). We adopt this assumption by 
neglecting this dependence, based on the results ot 
Appendix B. We further assume that the flame sta- 
bilizes in the attachment point (0,6,) as long as the 
gas speed equals uI. in this point [2,3]. These assump- 

tions lead to : 

h,, = ut 
!J 

where ,q is the gradient of the velocity profile in the 
boundary layer. 

The description presented here concentrates on 
conditions ahcad of the flame. These conditions C!O 

not change when the flame moves further down in the 
burner. Consequently. the value of 5, is equal 10 its 
value at the flash-back limit. Thus, ijq must be equal 
to the ratio of the adiabatic flame speed and the 
criticul gradienL for flash-back. Harris et ul. 1191 find 
a critical gradient for flash-back of 400 so ’ for ;I 
stolchlometric methane/air flame on I cylindrical 

Bunsen burner. This gives an cstirnated value for ail, 
01‘ 0.41 ,!400 111 ‘v IO x IO 1 111. 

Another point of reference for the calue ol‘o, ix the 

quench distance, which should correspond roughI> 
with a value of 26,. For a stoichiomctric CH,!ail 
flame von Karman and Millan [6] and Harris or al. [ I9] 
find a quench distance of 24 x IO ’ 111. experimentally. 
This leads to ii,, = I2 x 10 ’ m. 

The agreement between the experimental and the 
theoretical results is satisfactory. certainly in VICW 

of the mentioned physical simplifications and rhc 
indirect way in which the results arc compared with 

cxperimcntal data. 

10. CONCLUSION 

The given analytical description leads to results L~,I 
the temperature, mass fractions and Shvab -Zel’do- 
vich variables and a value for ‘1 which agree very well 

with the corresponding profiles found numerically. 
The analytical lreatment ((25) and (26)) shows that 
the length scale L and the ratio T,,:r dominate the 
thickness of the boundary layers ci,. The comparison 
with experimental results on flash-back and quench 
limits shows that the theoretically predicted thickness 
of the thermal boundary layer agrees reasonably well 
with experiments. 
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APPENDIX A. THE THERMAL CONDUCTIVITY 
ASSUMPTION 

The influence of the assumption that the thermal con- 
ductivity is constant, is studied in this appendix. The results 
of Sections 5-7 are judged by means of a comparison with the 
results of numerical calculations. This is done by choosing a 

i 

0 

thermal conductivity according to : 

I =JTer go [ 1 
Y 

where the value of ,& is equal to the value, used for A 
previously and where y is equal to 0.77. This representation of 
the thermal conductivity is based on a fit of the temperature 
dependence of the thermal conductivity of nitrogen accord- 
ing to the ex~rimental data of ref. PO]. The Lewis numbers 
are still assumed to be equal to one. The results of this 
calculation (mass fraction profiles, the ShvabZel’dovich 
variable Jt, and q’) are compared in Fig. Al with the results 
found previously (with y = 0). 

It is clear that the mean value for v’ does not change 
significantly, although its behaviour is somewhat more 
irregular than before. The value for 6, also hardly changes. 
In retrospect we may say that, as far as the stand-o~dis~nce 
is concerned, the constant value for thermal conductivity, 
which has been used in the previous sections, is well chosen. 

APPENDIX 6. THE VELOCITY PROFILE IN THE 
BOUNDARY LAYER 

The influence of changes in the velocity profile is tested in 
this appendix by the introduction of an nth-order velocity 
profile near the wall. This protile is given by : 

fory <yO: u=&[l- (I-;[] (Bl) 

and 

withy, equal to 8 x 10m4 m and u0 equal to 0.4 m s-l. Note 
that (Bl) is an &h-order velocity profile around y = yO. 
Further note that the limiting situation with n -+ co cor- 
responds with a constant velocity profile as used in the pre- 
vious sections. The horizontal velocity component is again 
assumed to be equal to zero. In Fig. Bl we compare the 

FIG. Al, The profiles in y-direction for (from left to right) I’,,, In (1 -Jc”,/.&) and vi according to (22) for 
y = 0 (top) and y = 0.77 (bottom). 
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FIG. Bl. The profiles in y-direction for (from left to right) : Y,,, in (1 -JrU/./;t) and q according to (22) 
using (from top to bottom) : n -+ ,x, YI = 2, n = I and II = 0. 

profiles of Y”‘, Jr, and q’ as a function of _V for the velocity the burner wall. The velocity approaches ilo somewhat fur- 

profiles with n = 0. I and 2 and for I? -+ CD, respectiveiy. ther away from the burner (for ah vahres of n), thus causing 
Note that the shape of the profiles remains more or less the similarity between the results for the tested values of II 

the same in the intermediate region 9 < .V < 15,. while large (not equal to 0) in the intermediate region. However, the 
changes are observed in the region .V < r?. This is caused by magnitude of $ and the thickness of the boundary layer ii, 
the fact that the velocity of the gas mixture close to the does not change significantly, in spite of the changes in the 
burner is approximately zero. instead of u. when n -+ X, profiles near the wall. 
which results in lower fuel and oxygen mass fractions along 


